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SUMMARY 
A collocated discretization of the 3D steady incompressible Navier-Stokes equations based on a flux-difference- 
splitting formulation is presented. The discretization employs primitive variables of Cartesian velocity components 
and pressure. The splitting used here is a polynomial splitting introduced by Dick and Linden of Roe type. 
Second-order accuracy is obtained with the defect correction approach in which the state vector is inter- 
polated with van Leer’s ic-scheme. The underlying solution technique to solve the discretized equations is 
a parallel multiblock multigrid method. Several 2D and 3D test problems such as driven cavity and channel flows 
are solved. 
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1. INTRODUCTION 

For the discretization and solution of the steady incompressible Navier-Stokes equations in arbitrarily 
shaped domains, several methods have been proposed. With the finite element method, very complex 
geometries can be discretized. However, for solving finite element dicretizations, it is a disadvantage 
that the sparsity pattern of a discretized operator is not regular. Therefore it can be difficult to find robust 
solution methods. A compromise between flexibility and robustness is the use of finite volume 
discretizations on block-structured grids. In a general domain, then, a boundary-fitted curvilinear grid is 
generated. With multiblock methods the flexibility of these finite volume methods is increased. The 
regular sparsity pattern in these discretizations can be employed for robustness and efficiency aspects of 
solution methods. The discretization methods adopting boundary-fitted curvilinear co-ordinate systems 
differ in grid arrangement (collocated or staggered grids) and in the choice of velocity components 
(Cartesian or so-called grid-oriented velocity unknowns such as contravariant components). Nowadays, 
discretization techniques that have proved to be successful and promising for 2D problems are 
being generalized to three dimensions. An (incomplete) overview of some of these techniques is 
given now. 

The first approach where complex flows are solved successfully employs a combination of staggered 
grids and contravariantflux unknowns and pressure as dependent variables. It is for example used in 
References 1 and 2, where also 3D problems were tackled. The same combination was used in a 
different fashion in Reference 3, for which 3D flow was shown in Reference 4. Another recent paper 
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with 3D equations solved on a staggered grid, and where the appearance of Christoffel symbols is 
avoided, is Reference 5. In Japan, staggered grids are widely investigated, for example in Reference 6 for 
2D and in Reference 7 for 3D problems with dependent variables of contravariant fluxes Vu and 
contravariant vorticities. 

The second and probably the most widely adopted approach to discretizing the incompressible 
Navier-Stokes equations in curvilinear co-ordinates is to use Cartesian velocity unknowns and pressure 
as dependent variables on a collocated grid. The pioneering paper of this collocated approach is by Rhie 
and Chou.8 A lot of research on discretizations for non-staggered grids with Cartesian velocity 
unknowns is also presented in References 9 and 10, where a set of benchmark solutions is proposed for 
the 2D incompressible Navier-Stokes equations in non-orthogonal domains. This approach is 
generalized to three dimensions in many papers: in References 11 and 12, where steady and unsteady, 
2D and 3D problems are solved, and in Reference 13, where the unsteady incompressible Navier-Stokes 
and Boussinesq equations are tackled. For efficient solution of the steady equations, sometimes 
pseudocompressibility methods are adopted. With an artificial time-dependent pressure term in the 
continuity equation the incompressible Navier-Stokes equations can be approached with methods from 
the compressible Navier-Stokes equations. This method is for example presented for a 3D collocated 
discretization in curvilinear co-ordinates in References 14 and 15, where also an advanced upwind 
scheme based on flux difference splitting is incorporated. 

In this paper the collocated approach is also adopted. The discretization which is generalized to three 
dimensions here is presented in Reference 16. With a flux-splitting formulation of the steady 
incompressible Navier-Stokes equations, well-known discretization and solution methods coming from 
the steady compressible Navier-Stokes  equation^,'^-'^ but not based on pseudocompressibility 
methods, can be used. Solution methods for the steady equations reach small residuals or order 
much faster than time-accurate methods. 

It is hard to say which approach is best in general co-ordinates. With pseudocompressibility methods 
it is difficult to achieve accurate mass conservation, especially for time-dependent flows. The other non- 
staggered methods require stabilization measures that may influence accuracy and may require tuning. 
In our discretization method the stabilization comes in naturally with flux splitting. The 3D 
incompressible Navier-Stokes equations are discretized on a block-structured grid with vertex-centred 
finite volumes. A first-order-accurate upwind discretization with polynomial flux difference splitting16 
is used. With defect correction, second-order accuracy is obtained with van Leer’s second-order IC- 
scheme.’’ Parallel multigrid is used to solve the steady equations directly as inner iteration in the defect 
correction technique. 17720,21 

At GMD a 2D incompressible Navier-Stokes code has been developed as part of the L,SS package.22 
LiSS is a programme package for solving partial differential equations on general domains. The parallel 
solution of equations has been focused upon by constructing parallel multigrid solution methods and 
parallelization tools such as a communications library based on PAIUV~ACS.~~ The parallelization 
strategy adopted is the grid-partitioning method (explained in Reference 24). 

In this paper we merely concentrate on the accuracy of the flow results obtained and on multigrid 
convergence results. A detailed comparison of the multiblock multigrid convergence for 2D and 3D 
problems as well as CPU time results is the subject of a forthcoming paper. 

Here several results will be presented, for example two benchmark problems that were proposed in 
Reference 10 for discretizations on non-orthogonal grids in two dimensions. Also 3D equivalents will 
be solved as well as 3D channel flows. 
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2. FLUX DIFFERENCE SPLITTING FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

In Cartesian co-ordinates the steady incompressible Navier-Stokes equations are given by 

au2 auv auw ap- 1 a% a2u a% 
- +-+-+--- +-+-), ax ay az ax Re (s aYz az2 

ax ay az ay Re 
auv a 2  aw ap 1 -+-+-+-=- 

c2(ax+&-+j-> a u i b a w  = 0. 

Here u, v, and ware the Cartesian velocity unknowns,~ is the pressure, c is a constant reference velocity 
and Re is the Reynolds number defined as 

Re = u L / v ,  (2) 

where 0 is a characteristic velocity, L is a characteristic length and v is the kinematic viscosity. 
The system of equations (1) is written in conservative form as 

af ag ah af, ag, ah -+-+-=-+-+> 
ax ay az ax ay az ' 

where f, g and h are the components of the convective flux vector given by 

u2 f p  

f = [  c2u .-[d?], 

and fv, g, and h, are the viscous fluxes given by 

uw .[] 
(1 /Re)av/az 
( 1 /Re)&/ az 

Differences with respect to u of the convective fluxes can be written as 

A g  = A ~ A u ,  Ah = A ,  Au. 

Here u = (u, v, ~ , p ) ~  and A , ,  A,  and A ,  are the discrete Jacobians given by 

A f  = A ,  Au, 

2 2 2 0 0 1  - i i o o  

A , = [  ii o i i o  '1, A , = [ :  o w v o  2v '1, A, = 

2 0 0 0  0 2 0 0  

where the overbar denotes the mean of variables. 

w o  ii 0 
o w  v 0 
0 0 2 w 1  
0 0 2 0  

(3) 

(4) 
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The matrix A will be written as a combination of A l  , A ,  and A,: 

n , i i + r  n y i  n,ii 

A = nlAl + n,,A2 + n P 3  = nyG n , G + r  nz ' ( 5 )  

n,c2 n Y 2  n,c2 O 

j., = = r ,  A3 = r + a ,  /.4 = r - a, (6) 

where r = n,ii + nyij + nzG and n,, ny and nz are the components of a normal vector. Using 
ni + n: + ni = 1, a set of three different eigenvectors is found for the matrix A: 

with a = J(? + c2) .  
However, a hll set of four left and right eigenvectors was found. This is done semi-automatically with 

the help of the symbolic manipulation programme REDUCE." The matrix A will be split into negative 
and positive parts A-.  and A+ : 

A = A -  + A + ,  A-  = RA-L,  A' = RA'L, (7) 

where 

0 0  0 0  

, A =  0 0 A; 
A-- - - 

0 0 i; 
0 0 o i i  0 0 0 ;.: 

Now, using (5) and (7), a linear combination of flux differences can be expressed as 

n,Af + n,Ag + n,Ah = ( A -  + A+)Au.  (8) 

3. FINITE VOLUME DISCRETIZATION 

This section is a three-dimensional continuation of the two-dimensional discretization in Reference 16. 
The formula chosen to calculate a 3D volume is found in Reference 26 (p.17) and is also used in 
Reference 1. Each volume is computed by dividing it into three pyramids having the main diagonal and 
one vertex of the volume in common; see Figure 1. In the formula in Figure 1, sl, j * k , ,  denotes the face 
through i, j ,  k and I and rl.J denotes the vector between i andj. The volume is found with inner products 
between si.J,k,/ and r l ,J .  

Finite volume integration of the inviscid part of (3) over the control volume Q,, gives 

(9) 

F l . J . k  = l/2,J,k(nxf + "yg + n z h ) l l , J , k ,  (10) 

To evaluate the term F l + 1 / 2 , J s k  in (9), Fl,J.k is defined as an approximation from the grid point (i, j ,  k ) :  

where f ,  g, hll.J.L denote that U-values from (i, j ,  k)T are used, (n,, ny,  nZ)* is the outward normal vector 
on the volume side and dS is the length of the volume side. F,+l,J,k is defined similarly as an 
approximation from (i + 1,  j ,  k ) :  

F ~ a  1.J.k = d s ~ + I / 2 , ~  k(n.r f  + "yg + nzh)~ l+~ , j , k '  (1 1) 
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For the flux F,+112,j9k an upwind definition is used: 

FI+I/2. j .k  = i ( F i . j , k  + Fi+ l , j , k  - ~ M I , i + l ~ ) ~  

Mi.i+l = Fi+ l . j , k  - Fi.j.k = dSi+ l /2 . j . kAi . i+ lAuI , i+ l~  

(12) 

where, as explained in Reference 16, AFi.i+l is defined as 

(13) 

Here Ai,i+l is built as in (5 ) ,  with ii-values coming from (i, j ,  k)T and (i + 1,  j ,  k)T, and Au,,,,, = 
I I , + ~ . ~ , ~  - u ~ , ~ . ~ .  With (7)  it now follows that for the absolute value of Mi,i+, is found 

Imi,I+l I = a i + l / 2 . j , k ( A l ; + l  - AL;+l)AUi.i+l. (14) 

The formula used in the discretization is found with (8), (lo), (12) and (13): 

Fi+ l /2 . j . k  = Fi. j ,k  + f ( F i + l , j . k  - F ; , j . k ) - ~ ~ m ; . i + l ~  

= F . .  1,j.k +- i d S i + I / 2 , j , k ( ? r f  . + "$ + nth) l ; , i .+ l  - i l"I,I+l 1 

= Fi, j .k  + ai+l /2 . j .kAU+1AUi. i+I.  

The fluxes on the other volume boundaries in (9) are treated in the same way. 
The viscous fluxes f,, g, and h, are discretized with the P e p t  control volume technique.*' The 

second derivatives disappear with a shifted control volume.'6s27 
Also the treatment of boundary conditions which is described in detail in Reference 16 is generalized 

to three dimensions. For solid wall Dirichlet conditions the velocity is prescribed, while the pressure at 
boundary points is found with an equation for the pressure coming fiom the continuity equation 
corrected with contributions from the momentum equations. At outflow, Neumann boundary conditions 
are prescribed. This leads to a simplification ofA--, with which the momentum equations at an outflow 
boundary are found. The boundary condition added is a prescription of pressure (p = 0). At inflow a 
fully developed inflow profile is prescribed; for example, for x = const. the equation solved is 

a2u a2u 
ayz h2 
- + - = G .  

For the pressure, again a pressure equation is solved. 
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The resulting discretization is first-order-accurate and so-called positive. This discretization for a grid 
point for the 2D equations then looks like 

1 
- - A  + 2ua, + ?:a, - Uay- 8, - 

hue J(L2 + 2 )  - ICI 
[ 2 ~ ( . ~  + c 2 )  - iq]a, a, + ap 

LJ + c2 
1 

.a, - - - A  Re +ua, + zDa,- ?" - 
J(UZ + 2 )  - IUI +----au hue h + c2)  - im, - ( lula, + 2(u7 + c2) 2 u2 + c2 

1 a, + -- _. 

h2(  2 J(u2 + c2) J ( L 2  + c2) aJ 
(17) 

where the three entries are for (u,  u . P ) ~  respectively. Here a represents a central discretization and 
the terms a, and ?,y are artificial dissipation terms. 

In general it is favourable for iterative solution methods that from discretized equations so-called K- 
matrices" result. Irreducible K-matrices lead to M-matrices:' for which it is known that an efficient use 
of basic iterative methods is possible. However, often, as for the steady incompressible Navier--Stokes 
equations, a second-order discretization does not guarantee K-matrix properties, while the first-order 
upwind operator (e.g. with (9), (1 2) and (1 5 ) )  does. With defect correction, second-order accuracy can 
be obtained by iterating with a first-order discretized operator. The right-hand side is then corrected with 
a second-order operator. 

Suppose that N' is the operator resulting from first-order discretization and N2 from second-order. 
Then iterative defect correction to solve N2(u) = s looks like 

find ii = do) 
for n = 1 to N do 

solve N'(U(")) = s - N2(U) + N ' ( i i )  
fi = .(") 

(18) 

enddo. 
It is shown in Reference 20 that defect correction converges to the second-order solution. The following 
equation has an interesting equivalence with (1 8): 

)I 1 (19) = ~ ( " - 1 )  + ~ " N I ( U ( " - I ) ) - ] [ ~  - N~(u("-') 

with w" = 1. With adaptive choices of w", additional acceleration could be obtained. This approach is 
not yet followed here. 

Multigrid with defect correction is depicted in Figure 2. It starts with nested iteration on the coarsest 
grid (FMG) to find do) in (1 8). After the finest grid has been reached, defect correction starts. Only on 
the finest grid is the right-hand side corrected. The second-order scheme used in defect correction is van 
Leer's  scheme." The vectors u , , ~ , ~  and u , + ~ , ~ , ~  in (12), (13) or in (17) are replaced respectively by 
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I 

VESTED IEERATlOS DEFECT CORRECTIOX 

Figure 2. The defect correction strategy with five-level multigrid V-cycles and the start on the comest grid (nested iteration) 

In they- and z-direction the vectors u ~ , ~ , ~ ,  I I ~ , , , ~ * ~  and U , j , k + l  are replaced in a similar way. 
All tests have been done with K = 0, the Fromm scheme. In Reference 17 for the steady compressible 

Navier-Stokes equations a limiter was needed to avoid wiggles near discontinuities. For the 
incompressible Navier-Stokes equations it is not necessary to implement a limiter. For many different 
problems at low and high Reynolds numbers, wiggles did not appear. 

4. RESULTS 

Solution algorithm 

The parallel multigrid algorithm consists of a host and a node programme. The host programme takes 
care of the organization of input and output. It creates node processes, mails initial data to node 
processes and receives calculated results such as residuals fiom nodes. In the node programme the 
calculation takes place; also communication among nodes is taken care of. These communication tasks 
are taken care of by PARMAcs-ba~ed~~ routines of the 3D communications library ‘CLIC’ (also used 
in Reference 29). With PARMACS-based routines, portability is guaranteed for a large class of parallel 
computers. Grid partitioning, the technique to distribute parts of a domain to different processes, is 
explained in many papers, for example in Reference 24. The domain is split into,blocks. Along the 
arisen interior block boundaries an overlap region is placed. Therefore all operations in multigrid such 
as restriction, prolongation and relaxation can be performed in parallel. Keeping the values in overlap 
regions up to date on all multigrid levels requires communication among the nodes. It should be noticed 
that a first-order discretization requires an overlap region of one line of cells in order to achieve 
accuracy, while for the second-order discretization with (20) the stencil for evaluation of the right-hand 
side grows and a straightforward implementation of the parallel algorithm requires an overlap region of 
two cells. As smoother in the multigrid algorithm an alternating line Gauss-Seidel smoother is used, 
which updates every iteration on all lines of a block in two or three directions. Owing to the fact that 
curvilinear block-structured grids are employed, line smoothers can be used in general domains. This 
smoother is satisfactory for the problems considered. For driven cavity problems, one pre- and one post- 
smoothing iteration are used. For channel flow problems, two smoothings are performed at each visit. 
For all problems considered, it did not appear to be necessary to use underrelaxation factors in the 
smoother. The algorithm converged for all geometries and all Reynolds numbers considered, which is an 
interesting aspect. 
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Driven cavity flows 

Already in Reference 16 the necessity for second-order-accurate solutions was shown; therefore we 
concentrate only on the defect correction solution method. In Reference 10, two benchmark problems 
are defined for 2D discretizations on non-orthogonal grids. The flow problems considered there are 
skewed dnven cavity problems. The domain, depicted in Figure 3, is a parallelogram with boundary 
length L = 1. The angle p is 45" or 30", so that highly non-orthogonal cells occur in the x-image of the 
grids. In this subsection our results will also be compared with the reference solutions and 3D 
equivalences will be introduced, for which the domain is also depicted in Figure 3. The top wall is 
moving with Cartesian velocity components (u, v ,  w ) ~  = (1 , 0, O)T. On all other boundaries, u = 0 is 
prescribed. The flow problems are also calculated in several other papersss3' for Reynolds numbers 100 
and 1000. 

We define three driven cavity test-cases: 1, the 2D square and 3D cubic driven cavity (angle fl  = 90"); 
2, the skewed 2D and 3D cavity with angle fl = 45"; 3, the skewed 2D and 3D cavity with angle fl  = 30". 

First the well-known 2D square driven cavity problem (test-case 1) is solved at Re = 1 O4 in order to 
show that the discretization and defect correction technique lead to convergence for high Reynolds 
numbers. In Figure 4(a) the streamlines for this flow are presented. The recirculation zones are identical 
with those from Reference 3 1. In Figure 4(b) the centreline velocity components obtained along the 
lines cll (u-velocity) and c12 (v-velocity) in Figure 3 for different grid sizes are presented and compared 
with the results from Reference 3 1. All results for this high Reynolds number compare very well. The 
sharp boundary layers near the walls are well captured. The four-block convergence factor found for the 
5 13 x 5 13 grid for defect correction with the multigrid W(1,l)-cycle was 0.85. 

For lower Reynolds numbers (Re = 100 and 1000) also very accurate 2D results were obtained, 
which are not shown here. The order of discretization accuracy for the flow at Re = 104 is checked with 
the help of the formula 

where uh denotes the u-velocity on a grid of size h; the order of accuracy, p, is to be determined and is 
the interesting parameter. If the convergence of profiles is monotone, the parameter p in (21) gives a 
good indication of the order of accuracy by solving two problems on different grid sizes. Formula (2 1) is 
checked for this first test-case with the centreline velocities found at a point near a minimum: 
y = 0.0625. Table I presents these u-velocities found for the different grid sizes together with the value 
o fp  found from (21). It is found that the value ofp on the finest grid is close to 2. 

In several p a p e ~ s , ' ~ , ~ ~ . ~ ~  similar . centreline velocity results are shown for the 3D cubic cavity. For 
Re= 100 and 1000 the centreline velocity profiles u along cll and w along c12 are calculated as in 
References 13,32 and 33. In Figure 5 these velocities are presented for our discretization. Solutions are 

u= 1 - 
, .  , .. 

L- c-- 

Figure 3. Domain for the two- and three-dimensional skewed driven cavity problem. The two-dimensional domain is the dashed 
mid-span plane 
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Figure 4. (a) Streamlines for flow at Re = lo4 in a 2D driven cavity. (b) Centreline velocity components u along cll and u along cl2 
for flow at Re = 1 O4 

presented on 1 7 x 1 7 ~ 1 7 ,  3 3 x 3 3 ~ 3 3  and 6 5 x 6 5 ~ 6 5  grids and for Re=lOOO also on a 
97 x 97 x 97 grid which contains more than 900,000 grid points. For the fine grids the domain is 
split into eight blocks, each of whch is solved on a processor of an MIMD computer, the LBM SPl 
with 9 nodes. It is found that the convergence of the centreline velocities on all grid sizes for 
Re = 100 is very satisfactory. Already on the coarse grid with 17 x 17 x 17 grid points the solution is 
qualitatively good. For Re = 1000 the solutions are quantitatively satisfactory fiom the 33 x 33 x 33 
grid. Clearly the centreline profiles are converging. 

Table I. An investigation of the accuracy of the Re = lo4 solution of the 
2D square driven cavity problem 

P U b  = 0.0625) Grid 

65 x 65 
129 x 129 
257 x 257 
513 x 513 

-0.33747 
-0.41251 
-0.43759 
-044465 

- 
1.6 
1.8 
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- -  1 t - - -  - - - - - - -  .a* t 

Figure 5. Centreline velocity components for flow at (a) Re = 100 and (b) Re = lo00 in a 31) cubic driven cavity for different grid 
sizes 

Next, test-cases 2 and 3, the test-cases from Reference 10, are considered. The 2D discretization is 
investigated on four grids consisting of 33 x 33,65 x 65, 129 x 129 and 257 x 257 cells. All streamline 
patterns for Rows at Re = 100 and 1000 agree closely with those in Reference 10. The streamlines 
presented here in Figure 6 are for the flows at Re = 1000 for /? = 45" and 30". Also the streamfunction 
values and positions compare very well with those in Reference 10. 

The same is also true for the velocity profiles along the centrelines cll and c12. Figure 7(a) shows the 
Cartesian velocity component u along the line cll for Re = 100, /? = 30"; Figure 7(b) shows u along cll 
for Re = 1000, /? = 30". The behaviour of the velocity v along c12 for this skewness angle as well as the 
behaviour of the velocity profiles for = 45" is similar and therefore not shown. It is remarkable that the 
centreline velocity profiles are already very satisfactory for relatively coarse grids (65 x 65). For a small 
number of unknowns, accurate results are obtained for both Reynolds numbers and both skewness 
angles. 

These benchmark problems are generalized to 3D problems here. For R e =  100 and 1000 the 
centreline velocity profiles u along cll and w along c12 are calculated on 17 x 17 x 17,33 x 33 x 33 and 
65 x 65 x 65 grids and for Re = 1000 also on 97 x 97 x 97 grid. The velocity profiles are shown in 
Figures 8 and 9 for both skewness angles. Again it is found that for Re = 100 all profiles are accurate, 
while for Re = 1000 the coarsest (17 x 17 x 17) grid appears to be too coarse to capture the features of 
the solution. A comparison among Figures 5 ,  8 and 9 shows that the discretization is as accurate in a 
rectangular cubic configuration as in skewed configurations; the convergence behaviour of the velocity 
profiles is identical. This is also a satisfactory conclusion. 



FLUX DIFFERENCE SPLITTA'G FOR NAVIER-STOKES EQUATIONS 357 

/" 

Figure 6. Streamlines for Re = loo0 for the 2D test-cases 2 and 3 

Comparing Figures 7 and 9, it can be seen that for the 30" skewed cavity for Re = 100 the 2D and 3D 
results are alike. For Re = 1000 the results differ very much. The same conclusion is drawn in Reference 
13 for the square and cubic cavity. Owing to these good results, the 3D discretization is also accurate. 
Finally, Figure 10 shows the eight-block multigrid convergence of the second-order residuals on the 
finest grid considered for the three test-cases for Re= 100 and 1000. For the flows at Re = 100 the 
multigrid V( 1 ,l)-cycle is performed, for Re = 1000 the F( 1 ,l)-cycle. 

As can be seen in Figure 10, the second-order convergence is good for flows at Re = 100. For flows at 
Re = 1000 the convergence slows down, particularly for testcase 2 (a convergence factor of 0.86 is 
obtained) where the non-diagonal operator elements are very large. However, convergence was still 
observed, but further research to improve convergence for this test-case is needed. Convergence 
problems for steady calculations can also indicate an unsteady solution. 

Three-dimensional flow in a 90" bending square duct 

Next to non-orthogonality of grid cells, the curvature of grid lines is another important aspect for 
discretizations in curvilinear co-ordinates. This aspect is studied here by solving the 3D channel flow 
problem in a 90" bending square duct. Several researchers'*'* have used the geometry presented in 

h 

Figure 7. Two-dimensional skewed cavity u-velocity profiles along cll for fl= 30" and (a) Re= 100, (b) W e =  lo00 
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Figure 8. Three-dimensional centreline velocity components for flow at (a) Re= 100 and (b) Re= 1000 in a 3D skewed (angle 
= 45") driven cavity for different grid size 

Figure 1 1, with L = 5, h = 1 and radius R = 1.8 to test their discretizations for a flow at Reynolds 
number 790. For this Reynolds number also experimental results, namely streamwise velocities at 
several stations in the flow, are The Reynolds number is based on the mean entrdnce velocity 
and the duct width. A fully developed inflow velocity profile from (1 6) is imposed at the inlet boundary. 
At the outflow boundary, Neumann boundary conditions are prescribed. 

In References 1 and 12 the unsteady equations are solved with a fractional step method to the steady 
state solution. In Reference 1 a staggered non-uniform grid is used; in Reference 12 a collocated non- 
uniform grid is used. As mentioned before, we solve the steady equations directly with defect 
correction. The flow domain is split into three blocks as depicted in Figure 11. Two grids are 
investigated consisting of 73 x 25 x 17 and 145 x 49 x 33 grid points in length, width and height 
direction respectively. The grid points are uniformly distributed; each block consists of 25 x 25 x 17 
points for the first run and 49 x 49 x 33 for the second. The symmetry of the problem is not taken into 
account here; symmetry conditions are not yet implemented. 

In Figure 12(a) the streamwise velocities at six streamwise stations (x  = -5, -2.5,O; 6 = 
30", 60°, 90') for z = 0.5 and 0.25 are presented as in References 1, 12 and 34. In Figure 12@) the 
results presented in Reference 1 are also shown. Very satisfactory agreement is found at all six stations 
with other numerical reference results. The streamwise velocity peaks near the outside wall at stations 5 
and 6 are very well captured. As in the other two references with numerical results, a difference from the 
experimental results can be observed at some of the stations. 



FLUX DIFFERENCE SPLITTING FOR NAVIER-STOKES EQUATIONS 359 

I 
I 

02 0 4  QI 0 1  
.umu 

4 3  

(a) 

Figure 9. Three-dimensional centreline velocity components for flow at (a) Re= 100 and (b) Re= loo0 in a 3K skewed (angle 
j = 30") driven cavity for different gnd sizes 
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Figure 10. For the three-dimensional test-cases the eight-block convergence of second-order residuals with V( 1.1 )-cycles in defect 

correction for Re= 100 on a 65 x 65 x 6 5  gnd and F(1,l)cycles for Re= lo00 on a 97 x97 x97 grid 

Figure 1 1. Domain for flow over a 3D square duct with a 90" bend and the division into three blocks 
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Figure 12. Comparison of streamwise velocity profiles at z = 0.25 and 0.5 obtained on two different grids with reference results of 
, Results from Rosenfield era/. '  (a) -- , Results on 145 x 49 x 33 gnd; - - -., results on 73 x 25 x 17 grid. @) -- 

Reference I ; -- - -. results from Reference I ; 0, experimental results from Reference 34 

Now some other flow features will be presented, such as pressure contours at several cross-flow 
planes, obtained on a 73 x 25 x 25 grid in Figure 13(a). It can be seen that the main vortices are 
generated in the bend and diffuse in the downstream part. In Figure 13(b), two streamlines are depicted. 
One of the streamlines departs from the geometrical centre of the inflow part of the duct. It leaves the 
centreline and continues along the wall of the duct owing to the centrifugal force. The other streamline 
departs closer to the wall, (x,  y,  z ) ~  = (-5, -24,0.65). Its rotating path is seen clearly in Figure 13(b). 

Furthermore, the cross-sectional velocity vector field at 8 = 90" is plotted in Figure 14. The problem 
symmetry is clear; five different vorticities can be seen. The results on this coarse uniform grid compare 
satisfactorily with the results in Reference 12. 

From the results presented above and the good agreement with the numerical reference results, it is 
concluded that the discretization can handle grids with strong curvature of grid lines. Finally, the 
multigrid convergence of the second-order results with F(2,2)-cycles is presented for both test runs in 
Figure 15. 

Three-dimensional backward-facing flow 

A well-known channel flow which is heavily studied for 2D discretizations (for example in 
References 35 and 36) is the laminar flow over a backward-facing step. For the 2D flow also 
experimental results are Here 3D flow will be studied. The computations presented are for 
Re = 200,400,600 and 800, with the Reynolds number defined as 

Here (/ is an average velocity defined as J[( 1 / N )  Cy u2], with N the number of u-unknowns at the 
inlet boundary. 
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Figure 13. Features of the 3D flow in a 90" bending duct for Re = 790: (a) pressure contours in cross-sections; (a) two streamlines 

Figure 16 shows the flow domain, which is split into nine blocks for parallel solution. The 
geometrical parameters are chosen as L ,  = 50, L, = 10, H = 2, h ,  = 1 and h, = lfor all Reynolds 
numbers. At the outflow boundary, Neumann boundary conditions are prescribed. At inflow a fully 
developed inflow is given, coming from (1 6). 

The length of the recirculation zone (x,) is determined for the Reynolds numbers investigated. It is 
defined as follows: 

I f  (U; , j , k  <o and U ; + l , j , k  ao), then X, = $X;,,,k -t X ; + l , j , k ) ,  withj such thatYi,,,k = 0.5. (23) 

This length is presented in Table I1 for two grid sizes containing 85 x 17 x 17 and 165 x 33 x 33 points. 

Figure 

. .  
+ ? , . - . - - . . a t #  I .(I.-CCC,. I +  

+++++++++++++++++++++++++ 

14. The velocity field in the cross-section at e =  90' 
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Figure 15. The three-block convergence of the second-order residuals with F(Z,Z)-cycles in defect correction for flow in a 90" 
bending duct on two grids, Re= 790 

Figure 16. Domain for flow over a 3D backward-facing step and the division into nine blocks 

Table 11. The calculated length of the recirculation zone, xr ,  in a 3D backward-facing 
step for for different Reynolds numbers 

Reynolds number x-value of reattachment point 

Grid 85 x 17 x 17 Grid 165 x 33 x 33 

200 
400 
600 
800 

4.69 
8 44 

12.19 
16.56 

4.53 
8.28 

12.34 
16.09 
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x.mircuIaUon 

Figure 17. The shape of the recirculation length line along the y-axis for different Reynolds numbers 

The recirculation lengths from Table 11 found for the two grids are already alike. The shape of the 
recirculation length line along the y-axis is shown in Figure 17. Here it can be seen that the lengths From 
Table I1 are actually minima; near the side wall boundanes of the domain the recirculation zones are 
largest. This shows the fact that the recirculation due to the step results in a truly 3D effect and that the 
flow is moving towards the channel centreline. For higher Reynolds numbers this effect is more 
pronounced. 

In Figure 18, two selected streamlines showing the recirculation in the step and velocity vectors in the 
mid-span plane are shown for Re = 400. In Figure 19 these pictures are shown for Re = 800. In Figures 
18 and 19 it can be observed that the streamlines that begin near a side wall enter the interior of the 
channel after the rotation near the step. This phenomenon is also shown in Reference 4 and, as 
mentioned before, influences the recirculation length. It is found that, contrary to the 2D results, a 
second recirculation zone near the upper wall of the channel did not appear with the geometry 
parameters chosen here. The nine-block multigrid defect correction convergence of the second-order 
residuals is shown in Figure 20. The multigrid cycle used is F(2,2). The convergence is satisfactory for 
all Reynolds numbers considered. 

5 .  CONCLUSIONS 

A 3D multiblock discretization for the steady incompressible Navier-Stokes equations in curvilinear co- 
ordinates is presented. The discretization is based on a flux difference formulation of the equations. A 
collocated grid arrangement of primitive variables, Cartesian velocity unknowns and pressure is used. 
The 3D algorithm is based on an existing 2D code which is first investigated for some driven cavity 
benchmark problems. The 2D benchmark solutions show that our code is a reliable solver for the 2D 
incompressible Navier-Stokes equations on non-orthogonal grids. For Reynolds numbers 100 and 
1000, very accurate results are obtained with a small number of grid points. 

Also for 3D problems the code produces satisfactory results. The centreline velocity profiles obtained 
in a cubic cavity compare very well with results From other papers. The convergence behaviour of 
velocity profiles in skewed 3D cavities with highly non-orthogonal grid cells is similar to the behaviour 
of the profiles in a cubic cavity with rectangular cells. Next to the non-orthogonality of gnd cells, it is 
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Figure 18. Thrce-dimensional flows over a backward-facing step (different blocks, all 17 x 17 x 17, are also visible in (a)) at 
Re = 400: (a) two selected streamlines showing thc recirculation; (b) velocity vectors in the mid-span plane 
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Figure 19. Three-dimensional flow over a backward-facing step (different blocks, all 17 x 17 x 17, are also visible in (a)) at 

Re = 800: (a) two selected streamllnes showing the recirculation; (b) velocity vectors in the mid-span plane 
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Figure 20. The nin-block convergence of the second-order residuals with F(2,2)-cycles in defect correction for backward-facing 

step flow on the finest grid comprising 165 x 33 x 33 points 

found that the discretization can handle strong grid curvature very well. Very satisfactory agreement is 
found between the numerical results obtained and reference results from other papers for the flow in a 
90” bending duct. Also the flow in a 3D backward-facing step is investigated, for which recirculation 
lengths are presented. 

It is found that the multigrid algorithm with the defect correction technique is a reliable solver for the 
problems investigated. It did not appear to be necessary to use underrelaxation factors in the alternating 
line Gauss-Seidel smoother for convergence. The multiblock algorithm converges very well for the 
driven cavity problems at Reynolds number 100. The results for channel problems were also 
satisfactory. The convergence for skewed driven cavity problems at Reynolds number 1000 needs 
improvement and further investigation. 
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